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1 ABSTRACT

In recent years, there has been developments in spiking neural
networks (SNN) which are advantaged over ANNs in many dif-
ferent ways, such as energy efficiency and reduced computational
complexity due to the discrete nature of spikes. In the vision space,
after the limitations of spiking ResNet models become apparent
in higher complexity tasks, recent research has all been focusing
on the spiking transformer. Specifically some formulation of the
spiking self attention system that is the core of the transformer.
In this work, I take a different approach and attempt to introduce
Mambea, the relatively novel selective state space model to the SNN
space. The primary contribution of this work is the creation of the
spiking mamba block and it’s relevant spiking S6 selection module.
With the spiking mamba block, I test how various hyper parame-
ters affect it’s performance, as well as combine it with transformer
blocks to see if it can be better than either individually. For results I
achieved 89% accuracy on the CIFAR-10 dataset, which while is not
state of the art, does signify the potential utility of spiking mamba
for future works.

2 INTRODUCTION

Spiking neural networks (SNN) are often hailed as the next gen-
eration [13] of neural networks due to its biological similarity,
low power requirements [14], and ability to process neuromorphic
datasets that are more relevant to how humans view the world.
However, it has historically suffered compared to conventional
artificial neural networks (ANN) in terms of performance.

Many attempts has been made to correct this, primarily by taking
the advancements made in the traditional ANN space into the SNN
space. These attempts include the Spiking Resnet [8] architecture
to understand residual learning in SNNs, as well as multiple for-
mulations for introducing transformers [18, 25] to the SNN space,
all with varying degrees of success as well as faithfulness to the
original transformer and self attention architectures [22, 23].

However, all these attention based formulations have a large
problem that is exacerbated by SNN models. Namely the computa-
tional costs [4, 10] in token processing. The vanilla self attention
mechanism as well as it’s derivatives relies on generating a value
for each token based on every other token that came before it,
leading great performance especially in understanding long range
dependencies[26] and deeper relations between tokens, but comes
at the cost of large amounts of matrix multiplication for giant ma-
trices.

With SNN specifically, both training and inference are not as
simple as in ANNs. Due to the stateful and time dependent nature of
spike generation, SNNs require multiple time steps [1] per forward
pass. These timesteps could range from a lower amount of 4 as
used in the SpikeFormer[25], all the way to the 250 steps used
in the converted ANN2SNN RestNet-34 [24]. While attention is

computationally heavy on it’s own, when combined with the many
timesteps needed for spiking neural networks, this creates multiple
times the computation needed depending on the time steps used.
For the backward error propagation, SNNs also require the usage of
synthetic gradients [2] to train due to the non differentiable nature
of spikes. Due to the multiple timestpes, the training process also
require taking the gradients of each time step. All together, this
makes attention based mechanisms, which are already expansive,
much more so for SNNs.

On the other hand, recent advancements in the ANN space,
namely mamba [6], recognized the problem with the heavy costs
of transformers and attempted to solve it by combining state space
models with a selection mechanism. This work has been largely
successful in solving the computational cost issue of transformers
and attention in ANNs without compromising much in the quality
of the output.

While certain works have criticized [9] mamba and experimen-
tally shown that it cannot compete with transformer in all areas,
due to several weaknesses especially related to information re-
trieval and copying, mamba is still good enough for most tasks,
especially where computational power and smaller model sizes are
prioritized over achieving the absolute state of the art performance
[19]. To this end, the mamba architecture is strongly relevant to the
progress of SNNs, which have the computational efficiency issue
due to the nature of statefulness over multiple time steps, and it’s
goal of achieving more efficient power usage compared to ANNs
[16].

To address these issues Jamba [12] was created as a variant of
both transformers and mamba SSMs that boasts a mix of efficient
performance from mamba as well as enhanced context recall from
transformers, by layering mamba, transformer, and mixture of ex-
perts (MOE) [15] components together at fixed ratios. The MOE
component in particular allows further optimization of computa-
tional performance while also allowing for larger parameter sizes.

In this paper, I create an modified mamba architecture that aligns
with the discrete spiking nature of SNNs. I then test the effectiveness
of Mamba based SNNs compared to transformer based ones. I also
test combined mamba-transformer models inspired by the Jamba
architecture to see if I can obtain the best of both worlds.

This work is mostly focused on reducing the computational
complexity of high functioning spiking neural networks while still
maintaining comparable performance. The purpose of which is
to create more efficient token processing framework for SNNs.
Specifically, this work is designed to improve upon previous vision
transformer work in the SNN space by having Mamba SSM blocks
replace some of the transformer attention blocks in the network.

The primary goal of this work is to demonstrate the effectiveness
and usability of selective state space models with spiking neural
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Figure 1: Spiking Mamba S6 State Selection

networks, and create a baseline for future developments in the SNN
space.

3 RELATED WORK

3.1 Spikeformer [25]

The Spikeformer is one of the first attempts at making a high perfor-
mance deep spiking neural network through introducing variations
of attention. The primary contribution of this work is their spik-
ing derivative of the Vanilla Self Attention, coined Spiking Self
Attention (SSA). This SSA removed many of the unnecessary com-
putation the ANN Vanilla Self Attention had, such as the softmax
function and the scaling factor based on embedding length. Instead
all 3 part of the query, key, and value are simply multiplied together
with a single hyperparameter based scaling factor.

Q= SNQ(BN(XWQ)),K =SSNk (BN(XWk)),V = SNy (BN(XWy))

SSA = SN (BN (Linear(SN(QKTV x5))))

In this formulation of spiking self attention, the input is con-
verted into query, key, and value vectors which are then turned
into spikes, multiplied together, turned into spikes again, then fed
through a single layer of neurons to transform the values before
converted back into spikes again. This formulation of Spiking Self
Attention is almost the same as the one used in my work, as it is
the easiest to implement and performs well enough to compare
against.

3.2 Spike-driven Transformer V1 and V2
[22, 23]

The Spike-Driven Transformers both V1 and V2 are designed for
vision tasks specifically. Throughout both versions, six total for-
mulations of what they called spike driven self attention (SDSA)
was created to adapt multi head self attention to a spiking com-
patible architecture. At first, they attempted to mirror the original
vanilla transformer design, and created justifications comparing
their SDSA to vanilla self attention. However, in v2 of the paper
they concluded that a attention mechanism faithful to the original
vanilla architecture did not lend itself to do well in the spiking
environment. Therefore the final version of SDSA is formulated
to be almost the exact same as the one from Spikeformer. This is
another reason the spikeformer SDA design is used in this work,

as all leading research in the area seem to have converged on this
similar design.

3.3 Vision Transformers (ViT) [3]

Both the Spikeformer and the Spike-driven Transformer have mainly
been focused on vision tasks. Vision Transformers have been popu-
lar as the latest state of the art visual content processing system, for
a variety of tasks including object classification, object detection,
and object segmentation. The primary structure of an VIT is 3 parts.
The first part being a way to separate an image into discrete tokens
rather than one entire image. This is done by generating patches
of the image through a convolution [20] neural network, where
the resulting channels are the tokens feed into the ViT. The second
part is the attention mechanism, and the third part is the output,
which is specific to each task type.

3.4 Mamba [5]

Mamba is a relatively recent development that aims to be a way
around the high computational costs of transformers. They built
upon the non selective structured state space model (54) [7], and
created a selective structured state space model (S6). The main
idea behind structured state space models is to model long term
dependencies using recurrent elements. The RNN is a type of struc-
tured state space model. Mamba’s main improvement is a way to
selectively focus on input tokens to pick out information compared
to traditional state space models by maintaining a time dependent
state. One of the main focuses of mamba implementation was a
hardware aware algorithm for state selection. However, for this
work, a simpler state selection mechanism is used to integrate with

spiking.

3.5 Jamba [12]

With the development of Mamba, while the computational com-
plexity issue was addressed, new issues were introduced compared
to the attention mechanism in Mamba’s weaker ability to recall
information, especially when the amount of information needed
to be copied increases. Jamba takes a best of two world’s approach
by introducing a hybrid architecture of transformer and mamba
blocks interviewed with each other. This allows for Jamba to both
have to information copying and recall of transformers as well as
the computational efficiency of mamba. Specifically, Jamba used a
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Figure 2: Spiking Mamba Block Architecture

structure of 1 transformer block with 7 mamba blocks to introduce
a 8 block architecture. Jamba also implemented a mixture of experts
(MOE) system that replaced the multi layer perception parts for
some of the mamba blocks to further increase efficiency. In this
work, I also test interweaving spiking self attention transformer
encoder blocks with spiking mamba blocks as inspired by Jamba,
albeit without the MOE portion due to time constraints.

4 METHODOLOGY
4.1 Core Spiking Mamba Block structure

As shown in Figure 2, the spiking mamba block is a modified ver-
sion of the original mamba block for ANNs. Notably, all activations
are replaced with Leaky-Integrate and Fire activation. One other
thing to note is contrary to the RMSNorm used for the original
mamba architecture, which is a more optimized version of layer
norm for designed to improve performance, the spiking mamba
block uses the standard BatchNorm. This is due to batch norms
being the type of normalization used for the spiking transformer
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Figure 4: Spiking Mamba S6 Selection

architectures as well, and to compare and contrast the effective-
ness of the two methods, I aim to minimize the amount of external
difference beside the architecture itself.

The input projection used in the block is a forward projection
that maps the batch normed input tokens into a higher dimensional
vector space. While this does not increase the amount of tokens,
it creates a bigger embedding for each token that helps with the
performance of the model in the token mixing process. Here a
separate projection matrix is used for the input projection and the
shortcut projection. This is the same way the original mamba block
for ANNs are implemented and this separation helps the model
converge faster.

By default, the spiking mamba block uses an input projection
size of 2 as it offered good results, with increasing the projection
size not drastically changing how well the model performs. That is
both the input projection layer and the shortcut projection layer
maps each token from embedding size to 2 embedding size, and the
output projection restores each token from 2 embedding size back
to embedding size.

The Channel Conv is by default 1 layer of 1D convolution with
kernel size 3 and padding 1. Similarly, the MLP is by default 1 single
Linear layer. While it is possible for each of these two components
to have more convolution layers and more linear layers respec-
tively, my testing show that these factors do not effect the model
performance much, and only increases the computational cost per
block.



The shortcut method here is the Spike Element Wise (SEW)
shortcut, similar as used in the Spikeformer. That is the shortcut
being the element wise addition is done after the Leaky-Integrate
and Fire layers of both the Shortcut Projection as well as the Spiking
S6 State Selection layer, then the result is converted into spikes
again through an LIF layer after the element wise add. While some
research has been done on the difference between various shortcut
types, including the Membrane Shortcut used in the Spike Driven
Meta-Transformer V2, the results show only a minor difference
between each shortcut type. Again for the sake of consistency in
comparing against the Spikeformer’s architecture on Spiking Self
Attention, this work by default uses the SEW shortcut method.

The Spiking Mamba block can itself be thought of as a type of
meta-transformer block, with it’s token mixer being the S6 selection
mechanism and the Channel Conv, MLP, and Input, Output pro-
jections thought of as the MLP section. Even though the order the
layers are implemented in the Spiking Mamba block do not exactly
match the structure of a meta-transformer, that is having the token
mixer first then the MLP layers after, the block itself can be swap-
pable with any other spiking meta-transformer block, including
the SDA block in the Spikeformer as well as the SDSA block in the
Spike-Driven Meta-Transformer. Thus further experimentation can
also compare slotting the Spiking Mamba Block directly into the
architectures of future works.

4.2 Spiking Selection S6 Architecture

The Selection S6 Architecture, show in Figure 1 is the heart of
Mamba, similar to Multi head Self Attention in Transformers. Simi-
lar to how previous works converted vanilla self attention to spiking
self attention by slightly changing the operations involved and in-
cluding an LIF layer at each output, the Spiking Selection S6 is
much of the same.

Primarily, every unique operation listed in Figure 4 is now given
an LIF activation after performing the operation, as shown in Figure
4. Additionally, the Softmax operations on the A and A variables
were removed for the same reason they were removed in the various
spiking attention operations. That is the softmax induces additional
computational cost that are unnecessary for spiking neural net-
works, as spikes are already non negative values at exactly 0 and
1, leading to the soft max operation being both unnecessary and
ineffective.

One of the advancements for mamba is the hardware aware ef-
ficient implementation for the state space search of the SSM. For
my implementation of the Spiking Mamba S6 Selection, unfortu-
nately I did not have time to research and implement a hardware
aware algorithm, instead my implementation uses a less efficient
non hardware aware version that performs 2 matrix multiplications
and 1 add for every token in the input.

Most of the parameters for the S6 selections are determined by
the overall model, such as the batch size, number of tokens, and
the embedding size, denoted as B, L, and D respectively in Figure 3
and Figure 4. The one parameter unique to the S6 selection process
is an state size, denoted N, to represent the time varying internal
state of the SSM mechanism. By default, this work uses an internal
state of 64.
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Figure 5: SSM

4.3 Transformer Blocks

Inspired by Jamba, this work also combines the spiking self atten-
tion with the mamba state selection mechanism by interweaving
mamba blocks and transformer blocks for a balance of computa-
tional efficiency and effectiveness.

Q = SN (BN(Conv(X)))
K = SN(BN(Conv(X))
V = SN (BN(Conv(X))

SSA = BN(Cono((SN(QK'V))))

Specifically I use a slightly modified version of the spiking self
attention from Spikeformer [25], with the difference being the scal-
ing factor s is removed, and instead the final LIF layer that process
the output of the attention has a learnable threshold. This is similar
to the SDSA 4 from the Spike Driven Meta-Transformer v2 [22],
however without the more efficient parameterized convolution as
that would take more implementation and also be more costly to
train.

For the most part the transformer architecture is about the same
as previous papers on spiking transformers. The main purpose of
this work was not to significantly change spiking transformers
rather use it in coordination with the spiking mamba block.

4.4 Spiking Patch Generator

For the ViT Portion of this work, I use a spiking patch generator
that uses L Convolution blocks. Each Convolution block is shown
in figure 5 as a 2D convolution of kernel size 3, followed by a 2D
batch norm, then a 2D Max Pooling with kernel size 2, stride 2, and
padding 1. Finally each block ends wiht an Leaky-Integrate and
Fire layer to make it a part of the spiking neural network.

For each of these blocks, the input channels start at the given
source input, then outputs twice as many channels as it inputs. In
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Figure 6: Spiking Transformer Encoder Block Architecture

otherwise, given L blocks from block number 0 to block number L-1,
the output channel of each block is equal to the final output channel
divided by 2Block Number This works well and is quite standard in
preexisting ViT works.

4.5 Encoding

For a spiking neural network, the encoding and decoding of input
data into spikes and output data from spikes is fundamental to
the functionality of the model. There are many ways to perform
encoding, from the relatively simple and computationally easy
methods such as latency encoding to much harder methods such
as delta modulation.

4.5.1 Rate Encoding.

One of the methods used for my testing is Rate Encoding [11],
which roughly take the input value, and interpret it as a spike rate.
This spike rate then corresponds to the number of spikes happening
within a time step.

(Conv with source input channels, 64 output channels)

(Conv with source input channels, 32 output channels)

!

Figure 7: Spiking Transformer Encoder Block Architecture

More formally, define spikes for each time step as a random
variable with probably p of occurring where p is equal to the nor-
malized value between 0 and 1 for the real number input. For an
image, this would be the normalized RGB pixel values between 0
and 1. Subsequently, each time step is defined as an independent
Bernoulli trial with probability p.

The total amount of spikes within all k time steps is then defined
as being sampled from a Binomial distribution with parameters
k and p. This is the primary method used for the tests outside of
ablation as it maintains a balance between computational efficiency
and robustness.

4.5.2 Latency Encoding.
This method of latency encoding does not require the randomness
of rate encoding, and thus also is computationally less expansive.
Latency encoding converts each input value into a discrete integer
between 1 and k, with k being the number of time steps. For each
scaled input value i, the ith time step would have a spike of 1 with
all other time steps containing the no spike value of 0.

This method while less computationally expansive, does lead to
a very sparse amount of spikes, carrying less information at each
time step. Thus it is not used as the default encoding method for
testing.



4.6 Decoding

As the primary testing done in this work is categorization. Both for
images in the cifar-10 and cifar-100 tests, as well as for the basic
mnist hyperparameter abilation test. The model outputs a vector
of length n for the n categories of the dataset for each k of the k
time steps. Each output vector is a spiking vector of either 0 or 1
for off and on spikes. The selected category is determined by the
maximally occurring spiking index.

Let k be number of time steps , n be number of categories

Output[K, N] « Model(Input[K, N])

Histogram = Count(Output)

Result = Mode(Count)

4.7 Loss

Due to the decoding used here being not a traditional categorization,
but rather a sort of categorization aggregating the output from k
time steps, a traditional loss function as as Cross Entropy loss
cannot directly be used to determine the error. Rather spiking time
step aware losses have to be used.

4.7.1 Cross Entropy Spike Count Loss.

The Cross Entropy Spike Count [21] loss function can be thought of
as a simple extension of the Cross Entropy loss function across time
steps. Just as the output counts are accumulated for a histogram to
determine the final categorization result, the Cross Entropy Spike
Count loss sums up the counts over the time steps for each category
into a histogram vector, then applies traditional Cross Entropy (Log
Softmax + NLLLoss) to the resulting vector. While this method
works, this is not the primary loss function used for my testing.

4.7.2  Cross Entropy Spike Rate Loss.

The Cross Entropy Spike Rate loss [17] function is similar to the
Cross Entropy Spike Count loss function in the sense it is also a
extension of the Cross Entropy loss function onto spiking neural
networks with k time steps. However, the order of operations here
differ from the Cross Entropy Spike Count Loss in the sense that
the latter accumulate the counts for each category first before
performing a Cross Entropy on the overall count vector, the Cross
Entropy Spike Rate Loss instead performs Cross Entropy for each
of the individual spike output vectors at each time step, then the
resulting Cross Entropy loss itself is summed across all k time steps
for the final loss.

This is the default loss function used for my testing as It works
and is more in line with the concept of spiking neural networks.
That is to handle input and outputs on a time step basis, including
calculating the loss, rather than doing so on the final result.
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5 RESULTS

5.1 Basic MNIST Hyperparameter Ablation

MNIST is a set of 60000, 28x28 single color images with 10 classes.
This test is designed to see how well the basic mamba block per-
forms for each parameters, in order to determine the more optimal
hyperparameters to be used for the more costly and time consuming
CIFAR-10 and CIFAR-100 tasks.

By nature, the parameter sizes for these model is designed to be
very small, rather it is designed to test out general trends in the
hyper parameters in relation to performance to determine the best
values for the other tests. All trials here are run on 2 epochs of
batch size 256 each. All trials are also ran with an embedding size
of 64. Each combination is run 3 times with the mean of the results
taken for training time and accuracy.

From my testing, increasing the number of channels drastically
speed up the convergence of the model in terms of time steps taken,
however, it drastically slows down the computation of the model
in terms of physical time taken to train. From the mnist results,
which mnist images are 28x28 single channel images, the 16 channel
worked the best efficient in terms of speed of convergence with
the 32, 64 channel gaining no significant increases in convergence
performance while adding more computational cost. Thus I also
use this result for the 3 channel datasets.

Continuing to the Time Step section, it seems that there is a big
leap in accuracy between 2 and 4 time steps, however, the running
time between 2 and 4 time steps didn’t seem to matter much. In fact
the average training time for the 2 time step version slightly exceeds
the 4 time step version. I think this is mostly due to the overhead
of other time consuming tasks being greater than inferencing 2
more times. From these results I decided to use 4 time steps for
subsequent testing.

For the number of patchifier blocks used. The results show that
2 and 3 are the best results for mnist, both with around the same
accuracy. With the 1 block version being significantly less effective,
and the 4 block version dropping slightly in accuracy as well. Sur-
prisingly, all 4 variants took around the same amount of time to
train, demonstrating that the patchification process is not the most
time consuming part of the model. I proceeded with 2 blocks for
the rest of the ablation.

For the combination of transformer and mamba vs just 2 mamba
blocks. My testing show that due to the smaller parameter size
of the transformer block in this case, as the internal mamba state
uses parameters of size 32. The transformer block combination was
faster to train, however, also converged slower than the mamba
only block.

5.2 CIFAR-10

CIFAR 10 is a set of 60000, 32x32 single color images with 10 classes.
This test is designed to test the mamba block in an more challenging
standard environment. To see how mamba blocks compare to past
works and their resulting with spiking transformers, as well a see
how mixing transformer and mamba blocks could effect the results.

While I did obtain results in this work, the results themselves
are not great and do not complete with previous transformer only
works. While I have tried many configurations, the training time
for each configuration range from 1 to 2 days. Given the limited
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Table 1: MNIST Hyper parameter Ablation

Model Size (Parameters) Channels Time Steps Patchifier Block Block Composition State Size Training Time (minutes) Accuracy
150k 8 10 2 Mamba + Mamba 32 3.02 0.92
157k 16 10 2 Mamba + Mamba 32 8.24 0.99
176k 32 10 2 Mamba + Mamba 32 14.05 0.99
229k 64 10 2 Mamba + Mamba 32 36.52 0.99
157k 16 2 2 Mamba + Mamba 32 2.41 0.93
157k 16 4 2 Mamba + Mamba 32 2.32 0.98
157k 16 8 2 Mamba + Mamba 32 7.45 0.99
157k 16 10 2 Mamba + Mamba 32 8.24 0.99
165k 16 4 1 Mamba + Mamba 32 2.30 0.85
157k 16 4 2 Mamba + Mamba 32 2.32 0.98
155k 16 4 3 Mamba + Mamba 32 2.34 0.98
154k 16 4 4 Mamba + Mamba 32 2.33 0.96
157k 16 4 2 Mamba + Mamba 32 2.32 0.98
89k 16 4 2 Mamba + Transformer 32 1.81 0.85
Table 2: CIFAR-10 Results

Model Size (Parameters) Channels Embedding Time Steps Patchifier Block Block Composition State Size  Accuracy
17.53 M - - - - ResNet-19 [8] - 94.44
4.15M - 256 4 - Spikeformer-4-256 [25] - 93.94
313K 128 8 4 4 4x Mamba (This) 16 63.23
3.80M 8 256 4 4 4x Mamba (This) 16 89.56
3.80M 8 256 4 4 3x Mamba + 1x Transformer (This) 16 84.60

amount of time, I was only able to achieve a maximum accuracy of
89.56 with a larger model and 63.23 for a smaller model size.

6 DISCUSSION
6.1 Training Methods

To speed up the training process, I used mixed precision training
with float16 data types and "high" precision matrix multiplications
that uses bloat16_3x data types. From my testing, using these 16 bit
data types for training the models drastically speed up the training
time by at least 1.5 to 2 times. However, the impacts whether using
mix precision compromised on any effectiveness of the models.

6.2 Limitations

One major limitation I faced throughout this project is a lack of
compute power, especially to make larger models or training my
models faster. This compounded with the time limitations for the
project and partially contributed to the lack luster results of this
work.

For the architecture itself, a major limitation is the selective scan
process. The selective scan process used in the implementation of
this model is based on a relatively simple software algorithm that
does not account for hardware efficiency. Rather the discretizations
tensors of every token is looped over, and 2 matrix multiplication
and 1 element wise add is used for each token. One of the main speed
advantages of mamba comes from the hardware aware selective

state space scanning, which is not implemented here. This could be
a future extension to the project.

6.3 Future Extensions

Plenty more work can be done on this project. Both in terms of ac-
complishing the purpose of this paper, that is create a mamba based
spiking vision network that can compete with existing spiking
ResNet and spiking transformer based ones. To this end, obtaining
> 90% results on CIFAR-10 for the 3 to 5 Million parameter size, and
obtaining close to 100% results on greater parameter sizes is a must.

CIFAR-100 and ImageNet-1K were originally planned for this
work. However due to time limitations and my inability to obtain
state of the art results on CIFAR-10 stumped the progress of the
CIFAR-100 and ImageNet-1K. The furthest I've gotten on CIFAR-100
is with a similar 3.8M parameter mamba model, at a 20% accuracy
after 3 days of training. I believe it is possible to achieve better
results using the same or some modifications to the Spiking Mamba
blocks in this paper with more time and resources.

In the vision domain, tasks such as Image Segmentation, Object
detection, and Neuromorphic datasets are all tested by other SNN
focused papers that spiking mamba could be applied to. Outside of
the vision domain, an auto regressive version of the spiking mamba
model could potentially be used for other fields such as text, image,
audio generations.



7 CONCLUSION

In this work, I adapted the Mamba block into a Spiking Mamba
block, with the heart of mamba, the S6 Selection mechanism also im-
plemented as an Spiking S6 Selection module. In addition, I adapted
a variation of a spiking patch generator, as well as attempted to mix
Spiking Mamba blocks with Spiking Transformer blocks containing
a slightly modified version of the Spiking Self Attention as inspired
by Jamba.

While the results obtained in this work are not quite state of the
art. I have gotten close with a close to 90% accuracy on the CIFAR-
10 dataset. In addition, I have also determined some patterns in the
hyper parameters from the Ablation that demonstrated the effects
and side effects of hyper parameters that are not easily intuitive
without testing.

I believe combining mamba with SNN is one of the better ways
to move spiking neural networks forward rather than focusing on
more elaborate convolution and creating more types of spiking self
attention.
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